A Previously Unknown Building Structure in Ancient Olympia (Western Peloponnese, Greece) Revealed by Geoarchaeological Investigations and Its Interpretation as a Possible Harbor
Abstract
:1. Introduction
2. Regional Setting and Historical Background
2.1. Regional Setting
2.2. Historical Background
3. Materials and Methods
3.1. Geophysical Prospection and Direct Push Sensing
3.2. Sediment Coring
3.3. Sedimentological Analyses
3.4. Micropalaeontological Analyses
3.5. Analyses of Vegetation and Fecal Biomarker
4. Results
4.1. Electrical Resistivity Tomography Transects
4.2. Frequency Domain Electromagnetic Induction
4.3. Sediment Core Stratigraphy
4.3.1. Unit 1: Colluvial/Alluvial
4.3.2. Unit 2: Limno-Fluvial
4.3.3. Unit 3: High-Energy Fluvial Type (heft)
4.3.4. Unit 4: Limnic
4.3.5. Unit 5: Fluvial
4.3.6. Unit 6: Stone/Brick Layer
4.4. Radiocarbon Dating
4.5. Micropalaeontological Analyses
4.6. Biomarker Analysis
5. Discussion
5.1. Identification of the Building Structure
5.2. Stratigraphic Record and Sedimentary Filling of the Building Structure
5.3. Interpretation of the Use of the Building Structure
5.3.1. Scenario 1—Bath Complex
5.3.2. Scenario 2—Latrine or Wastewater Basin
5.3.3. Scenario 3—Harbor Installation
5.4. Final Phase of the Building Structure and Its Sedimentary Burial
5.5. (Geo-)Archaeological Implications
6. Conclusions
- (a)
- The building structure, as suggested by geophysical prospection, measures at least 100 m (WSW-ENE) times 80 m (NNW-SSE). Its outer rectangular structure seems to be in line with the orientation of other buildings of ancient Olympia such as the Leo-nidaion and the Southwest Thermae. The building structure seems to have distinct outer edges and may be internally subdivided into two lateral sections in the west and the east with architectural structures, and a central basin. Detailed stratigraphic data confirm that the entire structure resembles an artificial basin with a floor that is slightly inclined from both west and east towards the central part. The deepest parts are in the central south section of the structure.
- (b)
- The building structure is filled with brown-to-dark-brown low-energy sediments of unit 4a dominated by clay and silt and rich in organic matter. Geochemical proxies document strong eutrophication and contamination with heavy metals. Ostracod analyses revealed limnic conditions in a dirty, standing water environment. High concentrations of n-alkanes and fecal lipid markers document considerable inflow of surface water and input of human and animal-borne excrements, respectively. Radio-carbon ages show that such limnic conditions persisted from the 5th century BC to the 6th century AD, thus largely covering the period of the Panhellenic Games.
- (c)
- Regarding the function of the building structure, we hypothesize that it may have served as a possible harbor installation. This interpretation is supported by its size, the materials used, the geoarchaeological interpretation of sediment-based proxies, and its location right between the cult site and the newly discovered Lake of Olympia.
- (d)
- The identified building stopped being in use shortly after 434–567 cal AD when the latest harbor-type limnic deposits were accumulated. We hypothesize that its stop of use is related to the impact of catastrophic earthquakes said to have hit Olympia in 521/551 AD. Earthquake-triggered landslides in the Kladeos River valley are assumed to have dammed up temporary lakes, the dams of which subsequently burst and caused high-energy floods—and mudflows. Their deposits covered the cult site and the identified building structure at or shortly after 596–647 cal AD. This is exactly the time when settlement activity at the cult site of Olympia stopped, based on archaeological evidence.
- (e)
- The existence of an inland harbor infrastructure that linked the cult site with the Lake of Olympia would entail considerable (geo-)archaeological implications. Among others, the lake could have been used as a waterway to the ancient site and may have served to clear building material or any kind of wares and to supply the visitors of the ancient cult site with food. A conclusive evaluation of the building structure can, of course, only be given by detailed archaeological excavations.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sinn, U. Das antike Olympia: Götter, Spiel und Kunst, 2nd ed.; C.H.Beck: München, Germany, 2004. [Google Scholar]
- Heilmeyer, W.-D.; Kaltsas, N.; Gehrke, H.-J.; Hatzi, G.E.; Bocher, S. (Eds.) Mythos Olympia. Kult und Spiele; Prestel: München, Germany, 2012. [Google Scholar]
- Kyrieleis, H. Olympia; Wissenschaftliche Buchgesellschaft: Darmstadt, Germany, 2011. [Google Scholar]
- Vött, A. Neue Geoarchäologische Untersuchungen zur Verschüttung Olympias. Eine Einführung in Die Olympia-Tsunami-Hypothese; Harrassowitz: Wiesbaden, Germany, 2013. [Google Scholar]
- Hoppe, A.; Lehné, R.; Hecht, S.; Vött, A. Olympia im Kontext der jüngsten Erd- und Landschaftsgeschichte. In Mythos Olympia. Kult und Spiele; Heilmeyer, W.-D., Kaltsas, N., Gehrke, H.-J., Hatzi, G.E., Bocher, S., Eds.; Prestel: München, Germany, 2012; pp. 232–235. [Google Scholar]
- Moustaka, A. Die deutschen und griechischen Ausgrabungen. In Mythos Olympia. Kult und Spiele; Heilmeyer, W.-D., Kaltsas, N., Gehrke, H.-J., Hatzi, G.E., Bocher, S., Eds.; Prestel: München, Germany, 2012; pp. 173–179. [Google Scholar]
- Schnapp, A. Vergessen und Wiederentdeckung Olympias von den Anfängen bis zur Expedition de Morée. In Mythos Olympia. Kult und Spiele; Heilmeyer, W.-D., Kaltsas, N., Gehrke, H.-J., Hatzi, G.E., Bocher, S., Eds.; Prestel: München, Germany, 2012; pp. 159–165. [Google Scholar]
- Slabon, L.; Obrocki, L.; Fischer, P.; Willershäuser, T.; Lang, F.; Gehrke, H.-J.; Eder, B.; Kolia, E.-I.; Pilz, O.; Wilken, D.; et al. The “Lake of Olympia”: Geoarchaeological evidence of a lake environment in the vicinity of ancient Olympia (western Peloponnese, Greece). In Advances in On- and Offshore Archaeological Prospection, Proceedings of the 15th International Conference on Archaeological Prospection, Kiel, Germany, 28 March–1 April 2023; Wunderlich, T., Hadler, H., Blankenfeldt, R., Eds.; Kiel University Publishing: Kiel, Germany, 2023; pp. 41–50. [Google Scholar] [CrossRef]
- Slabon, L.; Obrocki, L.; Bäumler, S.; Eder, B.; Fischer, P.; Gehrke, H.-J.; Kolia, E.-I.; Lang, F.; Pantelidis, G.; Pilz, O.; et al. The Lake of Olympia: Sedimentary evidence of a mid- to late Holocene lake environment in the vicinity of ancient Olympia (western Peloponnese, Greece). Quat. Environ. Hum. 2025; under review. [Google Scholar]
- Kalogeropoulos, K.; Tsanakas, K.; Stathopoulos, N.; Tsesmelis, D.E.; Tsatsaris, A. Cultural heritage in the light of flood hazard: The case of the “Ancient” Olympia, Greece. Hydrology 2023, 10, 61. [Google Scholar] [CrossRef]
- Institute for Geology and Mineral Exploration (IGME). Geological Map of Greece, 1:50,000; Olympia Sheet: Athens, Greece, 1982. [Google Scholar]
- Vött, A.; Willershäuser, T.; Röbke, B.R.; Obrocki, L.; Fischer, P.; Hadler, H.; Emde, K.; Eder, B.; Gehrke, H.-J.; Lang, F. Major flood events recorded in the Holocene sedimentary sequence of the uplifted Ladiko and Makrisia basins near ancient Olympia (western Peloponnese, Greece). Z. Geomorphol. Suppl. Issues 2015, 59, 143–195. [Google Scholar] [CrossRef]
- Papanikolaou, D.; Fountoulis, I.; Metaxas, C. Active faults, deformation rates and Quaternary paleogeography at Kyparissiakos Gulf (SW Greece) deduced from onshore and offshore data. Quat. Int. 2007, 171–172, 14–30. [Google Scholar] [CrossRef]
- Vött, A.; Fischer, P.; Röbke, B.R.; Werner, V.; Emde, K.; Finkler, C.; Hadler, H.; Handl, M.; Ntageretzis, K.; Willershäuser, T. Holocene fan alluviation and terrace formation by repeated tsunami passage at Epitalio near Olympia (Alpheios River valley, Greece). Z. Geomorphol. Suppl. Issues 2015, 59, 81–123. [Google Scholar] [CrossRef]
- Papadopoulos, G. Historical Seismicity of the Kyparissiakos Gulf, Western Peloponnese, Greece. Boll. Di Geofis. Teor. Ed Appl. 2014, 55, 389–404. [Google Scholar] [CrossRef]
- Gehrke, H.-J. Einleitung—Olympia in der Geschichte. In Mythos Olympia. Kult und Spiele; Heilmeyer, W.-D., Kaltsas, N., Gehrke, H.-J., Hatzi, G.E., Bocher, S., Eds.; Prestel: München, Germany, 2012; pp. 29–35. [Google Scholar]
- Kyrieleis, H. Die frühe Geschichte Olympias—Mythos und archäologische Forschung. In Mythos Olympia. Kult und Spiele; Heilmeyer, W.-D., Kaltsas, N., Gehrke, H.-J., Hatzi, G.E., Bocher, S., Eds.; Prestel: München, Germany, 2012; pp. 61–65. [Google Scholar]
- Kyrieleis, H. Anfänge und Frühzeit des Heiligtums von Olympia. Die Ausgrabungen am Pelopion 1987–1996; Olympische Forschungen, vol. 31; De Gruyter: Berlin, Germany, 2006. [Google Scholar]
- Mallwitz, A. XI. Bericht über die Ausgrabungen in Olympia; De Gruyter: Berlin, Germany, 1999. [Google Scholar]
- Sinn, U. Olympia und die Spiele in römischer Zeit. In Mythos Olympia. Kult und Spiele; Heilmeyer, W.-D., Kaltsas, N., Gehrke, H.-J., Hatzi, G.E., Bocher, S., Eds.; Prestel: München, Germany, 2012; pp. 105–109. [Google Scholar]
- Barringer, J.M. Olympia: A Cultural History; Princeton University Press: Princeton, NJ, USA, 2021. [Google Scholar]
- Völling, T.; Baitinger, H.; Ladstätter, S.; Rettner, A. Olympia in frühbyzantinischer Zeit. Siedlung—Landwirtschaftliches Gerät—Grabfunde—Spolienmauer. In Olympische Forschungen Vol. 34; iDAI Publications/Books: Berlin, Germany, 2023. [Google Scholar] [CrossRef]
- Mallwitz, A.; Schering, W. Die Werkstatt des Pheidias in Olympia. Erster Teil. In Olympische Forschungen; De Gruyter: Berlin, Germany, 1964; Volume 5. [Google Scholar]
- Heiden, J. Artemis-Altäre. In Mythos Olympia. Kult und Spiele; Heilmeyer, W.-D., Kaltsas, N., Gehrke, H.-J., Hatzi, G.E., Bocher, S., Eds.; Prestel: München, Germany, 2012; pp. 145–147. [Google Scholar]
- Wunderlich, T.; Wilken, D.; Erkul, E.; Rabbel, W.; Vött, A.; Fischer, P.; Hadler, H.; Heinzelmann, M. The river harbour of Ostia Antica—Stratigraphy, extent and harbour infrastructure from combined geophysical measurements and drillings. Quat. Int. 2018, 473, 55–65. [Google Scholar] [CrossRef]
- Giaime, M.; Jol, H.M.; Salmon, Y.; López, G.I.; Abu Hamid, A.; Bergevin, L.; Bauman, P.; McClymont, A.; Sailer-Haugland, E.; Artzy, M. Using a multi-proxy approach to locate the elusive Phoenician/Persian anchorage of Tel Akko (Israel). Quat. Int. 2021, 602, 66–81. [Google Scholar] [CrossRef]
- Kirchner, A.; Zielhofer, C.; Werther, L.; Schneider, M.; Linzen, S.; Wilken, D.; Wunderlich, T.; Rabbel, W.; Meyer, C.; Schmidt, J.; et al. A multidisciplinary approach in wetland geoarchaeology: Survey of the missing southern canal connection of the Fossa Carolina (SW Germany). Quat. Int. 2018, 473, 3–20. [Google Scholar] [CrossRef]
- Siart, C.; Ghilardi, M.; Forbriger, M.; Theodorakopoulou, K. Terrestrial laser scanning and electrical resistivity tomography as combined tools for the geoarchaeological study of the Kritsa-Latô dolines (Mirambello, Crete, Greece). Géomorphologie Relief Prosessus Environ. 2012, 18, 59–74. [Google Scholar] [CrossRef]
- Melis, R.; Borgia, E.; Agostini, S.; Celant, A.; Di Rita, F.; Forte, E.; Salvi, G.; Colizza, E. Palaeoenvironmental evolution and decline of the harbours of the Roman and Early Byzantine city of Elaiussa Sebaste (southeastern Turkey): Natural and anthropic causes. J. Quat. Sci. 2024, 40, 153–173. [Google Scholar] [CrossRef]
- Ullrich, B.; Meyer, C.; Weller, A. Geoelektrik und Georadar in der archäologischen Forschung: Geophysikalische 3D-Untersuchungen in Munigua (Spanien). In Einführung in die Archäometrie; Wagner, G., Ed.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 75–93. [Google Scholar]
- Obrocki, L.; Eder, B.; Gehrke, H.-J.; Lang, F.; Vött, A.; Willershäuser, T.; Rusch, K.; Wilken, D.; Hatzi-Spiliopoulou, G.; Kolia, E.-I.; et al. Detection and localization of chamber tombs in the environs of ancient Olympia, Peloponnese, Greece, based on a combination of archaeological survey and geophysical prospection. Geoarchaeology 2019, 34, 648–660. [Google Scholar] [CrossRef]
- Bäumler, S.; Wilken, D.; Fischer, P.; Obrocki, L.; Slabon, L.; Willershäuser, T.; Eder, B.; Gehrke, H.-J.; Kolia, E.-I.; Lang, F.; et al. The discovery of an unknown structure of the Sanctuary of Olympia by means of geophysical prospection. PLoS ONE 2025, submitted.
- Loke, M.H.; Barker, R.D. Rapid Least-Squares Inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophys. Prospect. 1996, 44, 131–152. [Google Scholar] [CrossRef]
- De Smedt, P.; Van Meirvenne, M.; Saey, T.; Baldwin, E.; Gaffney, C.; Gaffney, V. Unveiling the prehistoric landscape at Stonehenge through multi-receiver EMI. J. Archaeol. Sci. 2014, 50, 16–23. [Google Scholar] [CrossRef]
- Nabighian, M. Electromagnetic Methods in Applied Geophysic; Application; Society of Exploration Geophysicist: Oklahoma, OK, USA, 1991; Volume 2. [Google Scholar]
- Wilken, D.; Mercker, M.; Fischer, P.; Vött, A.; Erkul, E.; Corradini, E.; Pickartz, N. Artificial bee colony algorithm with adaptive parameter space dimension: A promising tool for geophysical electromagnetic induction inversion. Remote Sens. 2024, 16, 470. [Google Scholar] [CrossRef]
- Fischer, P.; Wunderlich, T.; Rabbel, W.; Vött, A.; Willershäuser, T.; Baika, K.; Rigakou, D.; Metallinou, G. Combined Electrical Resistivity Tomography (ERT), Direct-Push Electrical Conductivity (DP-EC) Logging and Coring–A New Methodological Approach in Geoarchaeological Research. Archaeol. Prospect. 2016, 23, 213–228. [Google Scholar] [CrossRef]
- Obrocki, L.; Vött, A.; Wilken, D.; Fischer, P.; Willershäuser, T.; Koster, B.; Lang, F.; Papanikolaou, I.; Rabbel, W.; Reicherter, K. Tracing tsunami signatures of the AD 551 and AD 1303 tsunamis at the Gulf of Kyparissia (Peloponnese, Greece) using direct push in situ sensing techniques combined with geophysical studies. Sedimentology 2020, 67, 1274–1308. [Google Scholar] [CrossRef]
- Ad-Hoc-Arbeitsgruppe Boden. Bodenkundliche Kartieranleitung (KA5), 5th ed.; Schweizerbart Science Publishers: Stuttgart, Germany, 2005. [Google Scholar]
- Köhn, M. Korngrößenanalyse mittels Pipettanalyse. Tonind.-Ztg. 1929, 55, 729–731. [Google Scholar]
- Blume, H.-P.; Stahr, K.; Leinweber, P. Bodenkundliches Praktikum: Eine Einführung in Pedologisches Arbeiten für Ökologen, Insbesondere Land- und Forstwirte, und für Geowissenschaftler, 3rd ed.; Springer: Heidelberg, Germany, 2011. [Google Scholar]
- Stuiver, M.; Reimer, P.J. Extended C14 data base and revised Calib 3.0 C14 age calibration. Radiocarbon 1993, 35, 215–230. [Google Scholar] [CrossRef]
- Reimer, P.J.; Austin, W.E.N.; Bard, E.; Bayliss, A.; Blackwell, P.G.; Bronk Ramsey, C.; Butzin, M.; Cheng, H.; Edwards, R.L.; Friedrich, M.; et al. The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP). Radiocarbon 2020, 62, 725–757. [Google Scholar] [CrossRef]
- Mazzini, I.; Goiran, J.P.; Carbonel, P. Ostracodological studies in archaeological settings: A review. J. Archaeol. Sci. 2015, 54, 325–328. [Google Scholar] [CrossRef]
- Mazzini, I.; Aiello, G.; Frenzel, P.; Pint, A. Marine and marginal marine Ostracoda as proxies in geoarchaeology. Mar. Micropaleontol. 2022, 174, 102054. [Google Scholar] [CrossRef]
- Frenzel, P. Fossils of the southern Baltic Sea as palaeoenvironmental indicators in multi-proxy studies. Quat. Int. 2019, 511, 6–21. [Google Scholar] [CrossRef]
- Athersuch, J.; Horne, D.J.; Whittaker, J.E. Marine and Brackish Water Ostracods, Synopses of the British Fauna (New Series); Brill: Leiden, The Netherlands; New York, NY, USA; Koppenhagen, Denmark; Köln, Germany, 1989. [Google Scholar]
- Meisch, C. Süßwasserfauna von Mitteleuropa; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Fuhrmann, R. Atlas quartärer und rezenter Ostrakoden Mitteldeutschlands. In Altenburger Naturwissenschaftliche Forschungen, vol. 15; Naturkundemuseum Mauritianum: Altenburg, Germany, 2012. [Google Scholar]
- Karanovic, I. Introduction. In Recent Freshwater Ostracods of the World; Springer: Berlin/Heidelberg, Germany, 2012; pp. 3–76. [Google Scholar] [CrossRef]
- Birk, J.; Dippold, M.; Wiesenberg, G.L.B.; Glaser, B. Combined quantification of faecal sterols, stanols, stanones and bile acids in soils and terrestrial sediments by gas chromatography–mass spectrometry. J. Chromatogr. A 2012, 1242, 1–10. [Google Scholar] [CrossRef]
- Leeming, R.; Ball, A.; Ashbolt, N.; Nichols, P. Using faecal sterols from humans and animals to distinguish faecal pollution in receiving waters. Water Res. 1996, 30, 2893–2900. [Google Scholar] [CrossRef]
- Frenzel, P.; Schulze, I.; Pint, A. Noding of Cyprideis torosa valves (Ostracoda)—A proxy for salinity? New data from field observations and a long-term microcosm experiment. Int. Rev. Hydrobiol. 2012, 97, 314–329. [Google Scholar] [CrossRef]
- Pint, A. Ostrakoden und Foraminiferen aus Athalassischen Gewässern und Deren Anwendung für die Rekonstruktion Quartärer Ökosysteme. Ph.D. thesis, Friedrich-Schiller-Universität Jena, Jena, Germany, 2016; p. 207. [Google Scholar]
- Pint, A.; Frenzel, P. Ostracod fauna associated with Cyprideis torosa—An overview. J. Micropalaeontol. 2017, 36, 113–119. [Google Scholar] [CrossRef]
- Matzanas, C. Die Kladeos-Ufermauer. In Mythos Olympia. Kult und Spiele; Heilmeyer, W.-D., Kaltsas, N., Gehrke, H.-J., Hatzi, G.E., Bocher, S., Eds.; Prestel: München, Germany, 2012; pp. 238–239. [Google Scholar]
- Khan, M.N.; Mohammad, F. Eutrophication: Challenges and solutions. In Eutrophication: Causes, Consequences and Control; Abid Ansari, A., Gill, S.S., Lanza, G.R., Rast, W., Eds.; Springer: Dortrecht, The Netherlands, 2014; pp. 1–15. [Google Scholar]
- Bhagowati, B.; Ahamad, K.U. A review on lake eutrophication dynamics and recent developments in lake modeling. Ecohydrol. Hydrobiol. 2019, 19, 155–166. [Google Scholar] [CrossRef]
- Ruiz, F.; Abad, M.; Bodergat, A.M.; Carbonel, P.; Rodríguez-Lázaro, J.; González-Regalado, M.L.; Toscano, A.; García, E.X.; Prenda, J. Freshwater ostracods as environmental tracers International. J. Environ. Sci. Technol. 2013, 10, 1115–1128. [Google Scholar] [CrossRef]
- Aydin, K. Baden wie die Römer—Badespaß, Saunaguss und Wellness pur. In Wasserwelten. Badekultur und Technik. Begleitschrift Zur Ausstellung Wasserwelten im Landesmuseum Natur und Mensch Oldenburg 15. August–17. Oktober 2010; Philipp von Zabern: Darmstadt, Germany, 2010; pp. 89–101. [Google Scholar]
- Brödner, E. Römische Thermen und Antikes Badewesen; Wissenschaftliche Buchgesellschaft: Darmstadt, Germany, 2011. [Google Scholar]
- Künzl, E. Die Thermen der Römer; Wissenschaftliche Buchgesellschaft: Darmstadt, Germany, 2013. [Google Scholar]
- Trümper, M. Greek Swimming Pools–Case Study of Olympia Cura aquarum in Greece. Schriften Dtsch. Wasserhistorischen Ges. 2017, 27, 215–250. [Google Scholar]
- Baeten, J.; Marinova, E.; De Laet, V.; Degryse, P.; De Vos, D.; Waelkens, M. Faecal biomarker and archaeobotanical analyses of sediments from a public latrine shed new light on ruralisation in Sagalassos, Turkey. J. Archaeol. Sci. 2012, 39, 1143–1159. [Google Scholar] [CrossRef]
- Marriner, N.; Morhange, C. Geoscience of ancient Mediterranean harbours. Earth-Sci. Rev. 2007, 80, 137–194. [Google Scholar] [CrossRef]
- Finkler, C. The Geological Record of Ancient Harbours: Using Ancient Harbour Geoarchives of Corcyra (Greece) to Reconstruct the Palaeoenvironmental Development and to Identify Extreme Events by Means of a Multi-Proxy Based Geoarchaeological Approach. Ph.D. Thesis, Johannes Gutenberg-Universität Mainz, Mainz, Germany, 2018. [Google Scholar] [CrossRef]
- Hadler, H.; Vött, A.; Koster, B.; Mathes-Schmidt, M.; Mattern, T.; Ntageretzis, K.; Reicherter, K.; Willershäuser, T. Multiple late-Holocene tsunami landfall in the eastern Gulf of Corinth recorded in the palaeotsunami geo-archive at Lechaion, harbour of ancient Corinth (Peloponnese, Greece). Z. Geomorphol. Suppl. Issues 2013, 57, 139–180. [Google Scholar] [CrossRef]
- Hadler, H.; Baika, K.; Pakkanen, J.; Evangelistis, D.; Emde, K.; Fischer, P.; Ntageretzis, K.; Röbke, B.R.; Willershäuser, T.; Vött, A. Palaeotsunami impact on the ancient harbour site Kyllini (western Peloponnese, Greece) based on a geomorphological multi-proxy approach. Z. Geomorphol. Suppl. Issues 2015, 59, 7–41. [Google Scholar] [CrossRef]
- Finkler, C.; Fischer, P.; Baika, K.; Rigakou, D.; Metallinou, G.; Hadler, H.; Vött, A. Tracing the Alkinoos Harbor of ancient Kerkyra, Greece, and reconstructing its paleotsunami history. Geoarchaeology 2018, 33, 24–42. [Google Scholar] [CrossRef]
- Ashton, N.; Lewis, S.G.; Stringer, C. (Eds.) The Ancient Human Occupation of Britain. In Developments in Quaternary Sciences, Vol. 14; AHOB Publications: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Ambraseys, N. Earthquakes in the Mediterranean and Middle East. A Multidisciplinary Study of Seismicity up to 1900; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Hadler, H.; Willershäuser, T.; Ntageretzis, K.; Henning, P.; Vött, A. Catalogue entries and non-entries of earthquake and tsunami events in the Ionian Sea and the Gulf of Corinth (eastern Mediterranean, Greece) and their interpretation with regard to palaeotsunami research. In Beiträge der 29. Jahrestagung des Arbeitskreises “Geographie der Meere und Küsten”, 28. bis 30. April 2011 in Bremen; Vött, A., Venzke, J.-F., Eds.; Bremer Beiträge zur Geographie und Raumplanung, Vol. 44; Institut für Geographie: Erlangen, Germany, 2012; pp. 1–167. Available online: https://www.geomorphologie.uni-mainz.de/files/2013/10/AMK29.pdf (accessed on 27 November 2024).
- Karkani, A.; Evelpidou, N.; Tzouxanioti, M.; Petropoulos, A.; Gogou, M.; Mloukie, E. Tsunamis in the Greek region: An Overview of Geological and Geomorphological Evidence. Geosciences 2022, 12, 4. [Google Scholar] [CrossRef]
- Stiros, S. The AD 365 Crete earthquake and possible seismic clustering during the fourth to sixth centuries AD in the Eastern Mediterranean: A review of historical and archaeological data. J. Struct. Geol. 2001, 23, 545–562. [Google Scholar] [CrossRef]
- Cleland, P.H.F. The Crime of Archeology–A Study of Weathering. Sci. Mon. 1932, 35, 169–173. [Google Scholar]
Core Photo | Sedimentary Characteristics | Geophysical Characteristics | Geochemical Characteristics | Thickness |
---|---|---|---|---|
Unit 1: colluvial/alluvial | ||||
ALP 91A | Silt-clay dominated, grey-brown in colour, dark brown topsoil, heavily rooted | Low to high DP-EC values (mean 10.32–48.19 mS/m, overall mean 25.89 mS/m), low to medium HPT press. (mean 23.72–262.77 kPa, overall mean 177.40 kPa) | Low to medium MS (mean 12.03 × 10−5–28.29 × 10−5), medium to high content of OM (mean LOI 3.37–5.64%); medium to high Ti/K ratio (mean 0.14–0.20); low to high Zr/Rb ratio (mean 0.71–2.12); Pb values vary from low to medium values (mean 11.31–64.44 ppm), but in most of the sediment cores Pb content is below limit of detection; low to medium P values (mean 373.05–585.81 mg/kg) | Min. thickness 0.25 m, max. thickness 0.76 m, range of 0.51 m |
Unit 2: limno-fluvial | ||||
ALP 92A | Beige-light brown in colour, partly laminated, contains freshwater gastropods, shows clayey silt intraclasts | Low to high DP-EC values (mean 12.55–44.07 mS/m, overall mean 26.58 mS/m), low to medium HPT press. (mean 34.06–293.35 kPa, overall mean 230.08 kPa) | Low MS (mean 6.98 × 10−5–12.96 × 10−5), medium to high content of OM (mean LOI 2.64–4.24%); medium to high Ti/K ratio (mean 0.15–0.17); low to high Zr/Rb ratio (mean 0.48–2.27); low Pb values, (mean 8.99–21.78 ppm); low P values (mean 378.63–409.11 mg/kg) | Min. thickness 0.08 m, max. thickness 1.50 m, range of 1.42 m |
Unit 3: high-energy fluvial type | ||||
ALP 124A | Silt to fine sand domi-nated, partly with medium to coarse sand components, beige-light brown in colour, erosional unconfor-mities, poorly sorted | Low to medium DP-EC values (mean 6.24–28.85 mS/m, overall mean 17.11 mS/m), low to medium HPT press. (mean 27.38–262.38 kPa, overall mean 198.75 kPa) | Low MS (mean 4.28 × 10−5–13.13 × 10−5); varies from low to medium values in OM (mean LOI 1.43–3.28%); Ti/K ratio varies from medium to high (mean 0.13–0.17); low to high Zr/Rb ratio (mean 0.62–2.50); low to medium Pb values (mean 9.77–56.65 ppm); low P values (mean 207.16–453.02 mg/kg) | Min. thickness 0.01 m, max. thickness 0.96 m, range of 0.95 m |
Unit 4: limnic, harbour-type | ||||
ALP 91A | Silt-clay dominated, fine-grained, brown-dark brown in colour, partly laminated, contains various charcoal and ceramic remains, contains brick fragments and metal, contains freshwater macrofauna, some sediments | Low to high DP-EC values (mean 8.38–51.65 mS/m, overall mean 34.22 mS/m), low to high HPT press. (mean 29.07–376.53 kPa, overall mean 240.83 kPa) | Medium to high MS (mean 19.91 × 10−5–99.70 × 10−5), MS values are highest in this unit within the cores; medium to high OM (mean LOI 2.35–4.21%); medium Ti/K ratio (mean 0.13–0.15); low to medium Zr/Rb ratio (mean 0.63–1.73); Pb varies significantly between sediment cores from low to high values (mean 14.88–90.58 ppm); medium to high P values (mean 863.44–2535.45 mg/kg) indicating strongly eutrophic conditions | Min. thickness 0.02 m, max. thickness 2.58 m, range of 2.56 m |
Unit 4b: limnic, pre-harbour setting | ||||
ALP 88A | Silt-clay dominated, partly with fine sand components, light brown-brown in colour | Medium DP-EC values (mean 25.18–32.20 mS/m, overall mean 28.04 mS/m), low to medium HPT press. (mean 21.53–278.42 kPa, overall mean 180.49 kPa) | Low to medium MS (mean 9.55 × 10−5–17.91 × 10−5) indicating less anthropogenic contamination; medium to high content of OM (mean LOI 2.36–3.77%), medium Ti/K ratio (mean 0.13–0.15); low to high Zr/Rb ratio (mean 0.75–2.11); low Pb values (mean 9.05–14.75 ppm); medium P value (602.61 mg/kg), still indicating euthrophic conditions | Min. thickness 0.33 m, max. thickness 0.93 m, range of 0.60 m |
Unit 5: fluvial | ||||
ALP 125A | Fine-to medium sand dominated, gravel, coarse components are visible, varies in colour from shades of brown and grey | Low to medium DP-EC values (mean 1.17–28.85 mS/m, overall mean 11.99 mS/m), low to medium HPT press. (mean 15.73–262.38 kPa, overall mean 182.30 kPa) | Low MS (mean 2.46 × 10−5–11.11 × 10−5); low to medium content of OM (mean LOI 1.61–3.22%), low to medium Ti/K ratio (mean 0.10–0.15); low to high Zr/Rb ratio (mean 0.93–2.60); low Pb values (10.40–22.40 ppm), in most of the sediment cores Pb is not detectable; low P values (243.70–335.73 mg/kg) | Min. thickness 0.17 m, max. thickness 1.73 m, range of 1.56 m |
Unit 6: brick layer | ||||
ALP 92A | Silt to fine sand dominated, partly with medium to coarse sand components, brown-dark brown in colour, contains charcoal and ceramic remains, contains layered bricks and limestone, contains freshwater macrofauna | Low to high DP-EC values (mean 16.26–49.70 mS/m, overall mean 29.82 mS/m), low to high HPT press. (mean 25.82–422.91 kPa, overall mean 217.15 kPa) | Medium to high MS (mean 22.93 × 10−5–148.04 × 10−5); low to high content of OM (mean LOI 1.41–4.38%), low to high Ti/K ratio (mean 0.11–0.17); low to high Zr/Rb ratio (mean 0.73–1.39); low to medium Pb values (16.52–52.45 ppm); medium to high P values (mean 895.71–2339.58 mg/kg) | Min. thickness 0.03 m, max. thickness 0.25 m, range of 0.22 m |
Sample Name | Lab No. | Depth (m b.s) | Depth (m a.s.l.) | Material | 14C age BP | +/− | δ13C [‰] | 1 σ Max; Min (cal BC/AD) | 2σ Max; Min (cal BC/AD) |
---|---|---|---|---|---|---|---|---|---|
ALP 88A/30 HK | 56668 | 3.54 | 30.69 | Charcoal | 1559 | 17 | −23.2 | cal AD 439; 554 | cal AD 434; 567 |
ALP 88A/33 HK2 | 56669 | 3.77 | 30.46 | Charcoal | 1787 | 17 | −18.1 | cal AD 239; 318 | cal AD 230; 330 |
ALP 88A/41 HK | 56671 | 4.59 | 29.64 | Charcoal | 2152 | 21 | −24.4 | cal BC 344; 160 | cal BC 350; 58 |
ALP 88A/43 HK | 56672 | 4.84 | 29.39 | Charcoal | 2414 | 19 | −22.8 | cal BC 514; 412 | cal BC 718; 405 |
ALP 88A/46 HK | 56673 | 5.20 | 29.03 | Charcoal | 2315 | 19 | −18.5 | cal BC 399-388 | cal BC 406- 370 |
ALP 88A/49 HK | 56674 | 5.47 | 28.76 | Charcoal | 2303 | 24 | −18.9 | cal BC 400-375 | cal BC 405; 233 |
ALP 88A/54 HK2 | 56675 | 5.87 | 28.36 | Charcoal | 2409 | 24 | −18.6 | cal BC 514; 409 | cal BC 724; 401 |
ALP 88A/63 HK | 56676 | 6.92 | 27.31 | Charcoal | 29,830 | 100 | −18.9 | cal BC 32504-32298 | cal BC 32595- 32185 |
ALP 89A/46 KN/Z | 56678 | 3.76 | 30 | Bone | 1726 | 21 | −22.4 | cal AD 258; 377 | cal AD 251; 405 |
ALP 89A/49 HK | 56679 | 4.26 | 29.5 | Charcoal | 2249 | 24 | −22.9 | cal BC 383; 231 | cal BC 389; 207 |
ALP 89A/64 HK/OS | 56680 | 4.50 | 29.26 | Charcoal | 2395 | 24 | −19.7 | cal BC 511; 404 | cal BC 715; 400 |
ALP 89A/54 HK | 56681 | 4.65 | 29.11 | Charcoal | 2168 | 25 | −25.4 | cal BC 350; 167 | cal BC 356; 108 |
ALP 89A/56 HK | 56682 | 4.86 | 28.9 | Charcoal | 2156 | 27 | −27.9 | cal BC 348; 124 | cal BC 353; 57 |
ALP 89A/59 HK | 56683 | 5.18 | 28.58 | Charcoal | 2313 | 24 | −22.5 | cal BC 401- 384 | cal BC 408; 234 |
ALP 91A/52 HK | 56684 | 3.76 | 30.25 | Charcoal | 1981 | 26 | −27.0 | cal BC 32; cal AD 72 | cal BC 41; cal AD 118 |
ALP 91A/53 HK | 56685 | 3.82 | 30.19 | Charcoal | 3041 | 23 | −24.9 | cal BC 1381; 1260 | cal BC 1393; 1220 |
ALP 91A/54 HK | 56686 | 3.92 | 30.09 | Charcoal | 2187 | 26 | −32.5 | cal BC 352; 177 | cal BC 361; 167 |
ALP 91A/58 HK | 56687 | 4.44 | 29.57 | Charcoal | 2066 | 22 | −22.7 | cal BC 104; cal AD 0 | cal BC 161; cal AD 6 |
ALP 91A/62 HK | 56688 | 4.75 | 29.26 | Charcoal | 2130 | 24 | −27.0 | cal BC 196; 60 | cal BC 343; 53 |
ALP 91A/64 HK | 56689 | 4.87 | 29.14 | Charcoal | 2229 | 24 | −22.4 | cal BC 364; 208 | cal BC 384; 202 |
ALP 91A/70 HK | 56690 | 5.48 | 28.53 | Charcoal | 2250 | 23 | −23.4 | cal BC 384; 231 | cal BC 389; 207 |
ALP 91A/71 HK | 56691 | 5.54 | 28.47 | Charcoal | 2230 | 22 | −26.6 | cal BC 365; 208 | cal BC 382; 203 |
ALP 91A/73 HK | 56692 | 5.72 | 28.29 | Charcoal | 2291 | 22 | −21.4 | cal BC 397-364 | cal BC 401; 232 |
ALP 92A/38 HK | 56693 | 3.38 | 30.44 | Charcoal | 1662 | 23 | −20.5 | cal AD 377-424 | cal AD 262; 529 |
ALP 92A/48 HK | 56694 | 4.70 | 29.12 | Charcoal | 2118 | 21 | −22.2 | cal BC 171; 59 | cal BC 335; 52 |
ALP 92A/49 PR/W | 56695 | 4.78 | 29.04 | Plant fragment | 396 | 20 | −25.7 | cal AD 1452-1489 | cal AD 1446; 1618 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Slabon, L.; Bäumler, S.; Appel, E.; Fiedler, S.; Fischer, P.; Obrocki, L.; Pantelidis, G.; Scherer, S.; Thein, B.; Willershäuser, T.; et al. A Previously Unknown Building Structure in Ancient Olympia (Western Peloponnese, Greece) Revealed by Geoarchaeological Investigations and Its Interpretation as a Possible Harbor. Heritage 2025, 8, 38. https://doi.org/10.3390/heritage8020038
Slabon L, Bäumler S, Appel E, Fiedler S, Fischer P, Obrocki L, Pantelidis G, Scherer S, Thein B, Willershäuser T, et al. A Previously Unknown Building Structure in Ancient Olympia (Western Peloponnese, Greece) Revealed by Geoarchaeological Investigations and Its Interpretation as a Possible Harbor. Heritage. 2025; 8(2):38. https://doi.org/10.3390/heritage8020038
Chicago/Turabian StyleSlabon, Lena, Sarah Bäumler, Elena Appel, Sabine Fiedler, Peter Fischer, Lea Obrocki, Georg Pantelidis, Sascha Scherer, Benedict Thein, Timo Willershäuser, and et al. 2025. "A Previously Unknown Building Structure in Ancient Olympia (Western Peloponnese, Greece) Revealed by Geoarchaeological Investigations and Its Interpretation as a Possible Harbor" Heritage 8, no. 2: 38. https://doi.org/10.3390/heritage8020038
APA StyleSlabon, L., Bäumler, S., Appel, E., Fiedler, S., Fischer, P., Obrocki, L., Pantelidis, G., Scherer, S., Thein, B., Willershäuser, T., Eder, B., Gehrke, H.-J., Lang, F., Kolia, E.-I., Pilz, O., Wilken, D., & Vött, A. (2025). A Previously Unknown Building Structure in Ancient Olympia (Western Peloponnese, Greece) Revealed by Geoarchaeological Investigations and Its Interpretation as a Possible Harbor. Heritage, 8(2), 38. https://doi.org/10.3390/heritage8020038