Jump to content

Ekuacionet e lëvizjes

Nga Wikipedia, enciklopedia e lirë

Ekuacionet e levizjes janë ekuacione që përshkruajnë sjelljen e një sistemi (p.sh., lëvizjen e një grimce nën ndikimin e një force) në funksion të kohës ose pa kohën.[1] Zakonisht termi i referohet ekuacioneve diferenciale që përshkruajnë sistemin (p.sh., Ligji i dytë i Njutonit ose ekuacionet e Ojler-Lagranzhit), si dhe zgjidhjeve të ekuacioneve në fjalë. Për çdo trup në lëvizje analizimi i forcave jep një ekuacion të caktuar i cili përmban terma që lidhen me nxitimin dhe shpejtësinë e trupit që po studiohet. Bashkësia e këtyre ekuacioneve njihen me emrin e përgjithshëm si ekuacionet e lëvizjes.

Ekuacionet e lëvizjes drejtvizore të njëtrajtshme të përshpejtuara

[Redakto | Redakto nëpërmjet kodit]

Ekuacionet që vlejnë për trupat në lëvizje drejtvizore (në një dimension), me nxitim konstant janë të dhëna më poshtë . Pesë variablat janë të përfaqësuara nga ato letra (s = distanca, = shpejtësia fillestare, = shpejtësia në fund të intervalit,a= nxitimi ,t = koha). Duhet të theksohet se në këtë notacion përdorim shkronjën r(range) për zhvendosjen e cila është madhësi vektoriale, dhe shkronjën s për distancën e cila është madhësi skalare.

Trupi analizohet mes dy çasteve kohore: në një pikë fillestare dhe në një pikë të tanishme (ose finale) . Problemet në kinematikë mund të merret në më shumë se dy caste, dhe disa zbatime të ekuacioneve janë të nevojshme në atë rast. Nëse a (nxitimi) është konstant, një diferencial , dt, mund të integrohet mbi një interval nga 0 në (), për të marrë një marrëdhënie lineare për vektorin e shpejtësisë. Integrimi i vektorit të shpejtësisë jep një marrëdhënie kuadratike për pozicionin në fund të intervalit.


ku ...

është vektori fillestar i shpejtësisë
është pozicioni fillestar i trupit

dhe gjëndja e tanishme jepet nga :

, vektori i shpejtësisë në fund të intervalit
, pozicioni në fund të intervalit të (zhvendosjes)
, intervali kohor midis gjndjes fillestare dhe asaj të tanishme
, nxitimi konstant, ose në rastin e trupave nën influencën e gravitetit , g.

Vini re se secili nga ekuacionet ka katër nga pesë variablat e duhura. Pra në një situatë të tillë është e mjaftueshme të dimë tre nga variablat për të gjetur dy të tjerat.

Ekuacionet klasike

[Redakto | Redakto nëpërmjet kodit]

Ekuacionet e mëposhtme përshkruajnë lëvizjen drejtvizore me nxitim të pandryshueshëm [2] këto ekuacione shkruhen në formën e mëposhtme :[3]

Duke zëvendësuar (1) tek (2), marrim (3), (4) dhe (5). (6) mund të merret duke rirregulluar (1).

ku

s = distanca midis pozicionit fillestar dhe atij final (zhvendosja) (në disa literatura mund ta gjeni si R ose x)
= shpejtësia fillestar (vlera e shpejtësisë në çdo drejtim)
= shpejtësia finale
a = nxitimi konstant
t = koha që duhet për të kaluar nga gjenda fillestare tek ajo përfundimtare

Shumë shembuj në kinematikë përfshinë studimin e predhës, për shembull një top i hedhur në ajër në një kënd të caktuar. Po të kemi vlerën e shpejtësisë fillestare , ne mund të llogaritim se sa lart topi do të arrijë para se të bjerrë.

Nxitimi në këtë rast është nxitimi i fushës së rëndesës normale g. Tani duhet të vemë në dukje faktin se këto madhësi janë madhësi skalare, drejtimi i zhvendosjes, vlerës së shpejtësisë dhe nxitimit janë të rëndësishme . Po të zgjedhim s si simbolin për matjen e distancës nga dheu, nxitimi a duhet të jetë −g, meqënëse forca e gravitetit vepron drejt qendrës së tokës .

Tek pika më e lartë topi do qëndrojë në prehje: pra = 0. Duke përdorur ekuacionin e pestë , marrime:

Versione më të zgjeruara të këtyre ekuacioneve përfshijnë madhësinë Δs , ku zhvendosja përcaktohet si diferenca e vektorit fillestar të zhvendosjes me atë final (s), për pozicionin fillestar të trupit , si dhe përdorimin e për shpejtësinë finale dhe për shpejtësinë fillestare (initial) që simbolet të jenë më konsistente.


Duke zhvendosur termat brenda dhe eliminuar shenjën minus marrim:

Lidhje të jashtme

[Redakto | Redakto nëpërmjet kodit]
  1. ^ Halliday, David; Resnick, Robert; Walker, Jearl (2004-06-16). Fundamentals of Physics (bot. 7 Sub). Wiley. ISBN 0471232319. {{cite book}}: Mungon ose është bosh parametri |language= (Ndihmë!)
  2. ^ Keith Johnson (2001). Physics for you: revised national curriculum edition for GCSE (bot. 4th). Nelson Thornes. fq. 135. ISBN 9780748762361. Nqs dini tre nga këto ekuacione , dy të terat mund të derivohen . {{cite book}}: Mungon ose është bosh parametri |language= (Ndihmë!)
  3. ^ Hanrahan, Val; Porkess, R (2003). Additional Mathematics for OCR. London: Hodder & Stoughton. fq. 219. ISBN 0-340-86960-7. {{cite book}}: Mungon ose është bosh parametri |language= (Ndihmë!)
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy